January 2009

4725 Further Pure Mathematics 1

PMT

4725

4		3.61	1	26.12.1.1
1		M1		Multiply by conjugate of denominator
		A1 A1		Obtain correct numerator
	$\frac{7}{26} + \frac{17}{26}$ i.	A1	4	Obtain correct denominator
	20 20		4	
2	(5 0)	B1		Both diagonals correct
	(i) $\frac{1}{10} \begin{pmatrix} 5 & 0 \\ -a & 2 \end{pmatrix}$	B1	2	Divide by correct determinant
	(-a 2)			
	(3 - 2)	B1		Two elements correct
	(ii) 5 2	B1	2	Remaining elements correct
	(2a 6)	D1	4	Remaining elements correct
3		M1	-	Examples of a sum of 2 towns
3	2 2			Express as sum of 3 terms
	$n^{2}(n+1)^{2} + n(n+1)(2n+1) + n(n+1)$	A1		2 correct unsimplified terms
		A1		3 rd correct unsimplified term
	$m(n+1)^2(n+2)$	M1		Attempt to factorise
	$n(n+1)^2(n+2)$	A1ft		Two factors found, ft their quartic
		A1	6	Correct final answer a.e.f.
			6	
4		B1		State or use correct result
-		M1		Combine matrix and its inverse
	$(0 \ 0)$	A1		Obtain I or I^2 but not 1
		A1 A1	4	Obtain zero matrix but not 0
	$(0 \ 0)$	AI		
-		3.61	4	S.C. If 0/4, B1 for AA ⁻¹ = I
5	Either	M1		Consider determinant of coefficients of LHS
		M1		Sensible attempt at evaluating any 3×3 det
	4k-4	A1		Obtain correct answer a.e.f. unsimplified
		M1		Equate det to 0
	k = 1	A1ft	5	Obtain $k = 1$, ft provided all M's awarded
				1
	Or	M1		Eliminate either <i>x</i> or <i>y</i>
		A1		Obtain correct equation
		M1		Eliminate 2 nd variable
		A1		Obtain correct linear equation
		A1 A1		Deduce that $k = 1$
		AI	=	Deduce that $\kappa = 1$
-	(\$) E:4h on	D1 DD1	5	Deflection in a swip
6	(i) Either	B1 DB1	2	Reflection, in x-axis
	Or	B1 DB1		Stretch parallel to y-axis, s.f. –1
	(ii)	B1 DB1	2	Reflection, in $y = -x$
	(iii) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$			
	(iii) 1 0	B1 B1	2	Each column correct
	(iv)	B1B1B1	3	Rotation, 90°, clockwise about O
			9	S.C. If (iii) incorrect, B1 for identifying
				their transformation, B1 all details correct
		ļ	l	men dansivi manon, Di an uctans collect

7	(i) $13^n + 6^{n-1} + 13^{n+1} + 6^n$ (ii)	B1 M1 A1 B1 B1 B1	3 4 7	Correct expression seen Attempt to factorise both terms in (i) Obtain correct expression Check that result is true for $n = 1$ (or 2) Recognise that (i) is divisible by 7 Deduce that u_{n+1} is divisible by 7 Clear statement of Induction conclusion
8	(i)	M1		Expand at least 1 of the brackets
		A1	2	Derive given answer correctly
	(ii) $\alpha + \beta = 6k, \alpha\beta = k^2$ $\alpha - \beta = (4\sqrt{2})k$	B1 B1 M1 A1	4	State or use correct values Find value of $\alpha - \beta$ using (i) Obtain given value correctly (allow if $-6k$ used)
	(iii) $\sum \alpha' = 6k$	B1ft		Sum of new roots stated or used
	$\alpha'\beta' = \alpha\beta - (\alpha - \beta) - 1$	M1		Express new product in terms of old roots
	$\alpha' \beta' = k^2 - (4\sqrt{2})k - 1$	A1ft		Obtain correct value for new product
	$x^{2} - 6kx + k^{2} - (4\sqrt{2})k - 1 = 0$	B1ft	4 10	Write down correct quadratic equation
9	(i)	M1		Use correct denominator
		A1	2	Obtain given answer correctly
	(ii) $1 + \frac{1}{3} - \frac{1}{2n-1} - \frac{1}{2n+1}$	M1 M1 A1 A1 M1 A1	6	Express terms as differences using (i) Do this for at least 1 st 3 terms First 3 terms all correct Last 3 terms all correct (in terms or <i>n</i> or <i>r</i>) Show pairs cancelling Obtain correct answer, a.e.f.(in terms of <i>n</i>)
	(iii) $\frac{4}{3}$	B1ft	1 9	Given answer deduced correctly, ft their (ii)

10	(i) $x^2 - y^2 = 2,2xy = \sqrt{5}$	M1		Attempt to equate real and imaginary parts
		A1		Obtain both results a.e.f.
	$4x^4 - 8x^2 - 5 = 0$	M1		Eliminate to obtain quadratic in x^2 or y^2
		M1		Solve to obtain x (or y) values
	$x = \pm \frac{\sqrt{10}}{2}, y = \pm \frac{\sqrt{2}}{2}$	A1		Correct values for both x & y obtained a.e.f.
	$\pm \left(\frac{\sqrt{10}}{2} + i \frac{\sqrt{2}}{2}\right)$	A1	6	Correct answers as complex numbers
	(ii) $z^2 = 2 \pm i \sqrt{5}$			2
		M1		Solve quadratic in z^2
	$z = \pm (\frac{\sqrt{10}}{2} \pm i \frac{\sqrt{2}}{2})$	A1		Obtain correct answers
	$\zeta = \pm (\frac{1}{2} \pm 1 \frac{1}{2})$	M1		Use results of (i)
		A1ft	4	Obtain correct answers, ft must include root from conjugate
	(iii)	B1ft	1	Sketch showing roots correctly
	(iv)	B1 B1ft		Sketch of straight line, \perp to α
		B1ft	3	Bisector
			14	